• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Addition of heparin binding sites strongly increases the bone forming capabilities of BMP9 in vivo
 
  • Details
  • Full
Options
2023
Journal Article
Title

Addition of heparin binding sites strongly increases the bone forming capabilities of BMP9 in vivo

Abstract
Bone Morphogenetic proteins (BMPs) like BMP2 and BMP7 have shown great potential in the treatment of severe bone defects. In recent in vitro studies, BMP9 revealed the highest osteogenic potential compared to other BMPs, possibly due to its unique signaling pathways that differs from other osteogenic BMPs. However, in vivo the bone forming capacity of BMP9-adsorbed scaffolds is not superior to BMP2 or BMP7. In silico analysis of the BMP9 protein sequence revealed that BMP9, in contrast to other osteogenic BMPs such as BMP2, completely lacks so-called heparin binding motifs that enable extracellular matrix (ECM) interactions which in general might be essential for the BMPs' osteogenic function. Therefore, we genetically engineered a new BMP9 variant by adding BMP2-derived heparin binding motifs to the N-terminal segment of BMP9′s mature part. The resulting protein (BMP9 HB) showed higher heparin binding affinity than BMP2, similar osteogenic activity in vitro and comparable binding affinities to BMPR-II and ALK1 compared to BMP9. However, remarkable differences were observed when BMP9 HB was adsorbed to collagen scaffolds and implanted subcutaneously in the dorsum of rats, showing a consistent and significant increase in bone volume and density compared to BMP2 and BMP9. Even at 10-fold lower BMP9 HB doses bone tissue formation was observed. This innovative approach of significantly enhancing the osteogenic properties of BMP9 simply by addition of ECM binding motifs, could constitute a valuable replacement to the commonly used BMPs. The possibility to use lower protein doses demonstrates BMP9 HB's high translational potential.
Author(s)
Siverino, Claudia
Fahmy-Garcia, Shorouk
Niklaus, Viktoria
Kops, Nicole
Dolcini, Laura
Misciagna, Massimiliano Maraglino
Ridwan, Yanto R.
Farrell, Eric
Osch, Gerjo J.V.M. van
Nickel, Joachim  
Fraunhofer-Institut für Silicatforschung ISC  
Journal
Bioactive materials  
Open Access
DOI
10.1016/j.bioactmat.2023.07.010
Additional link
Full text
Language
English
Fraunhofer-Institut für Silicatforschung ISC  
Keyword(s)
  • Bone morphogenetic protein 9 (BMP9)

  • Bone regeneration

  • Heparin binding sites

  • Subcutaneous animal model

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024