• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Automated lung tumor detection and diagnosis in CT Scans using texture feature analysis and SVM
 
  • Details
  • Full
Options
September 26, 2018
Conference Paper
Title

Automated lung tumor detection and diagnosis in CT Scans using texture feature analysis and SVM

Abstract
CT scans are an important tool in the diagnosis of lung tumors in medicine. This work presents an automated system for lung tumor diagnosis on CT scans. Scans are automatically segmented using marker-based watershed transformation, which successfully segments hardly separable, lung wall adjunct tumors. The scans are further analyzed in a sliding window approach using Haralick features and a Support Vector Machine classifier to detect and classify benign and malignant tumors. This novel approach for classification was tested using the LUNGx Challenge dataset and achieved exceptional results while utilizing a minimal training set.
Author(s)
Adams, Tim  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Dörpinghaus, Jens
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Jacobs, Marc  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Steinhage, Volker
Mainwork
Federated Conference on Computer Science and Information Systems 2018. Communication papers  
Conference
Federated Conference on Computer Science and Information Systems (FedCSIS) 2018  
Open Access
DOI
10.15439/2018F176
Link
Link
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Keyword(s)
  • lung cancer

  • Support Vector Machine

  • texture feature

  • diagnosis

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024