• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. MultiGML: Multimodal graph machine learning for prediction of adverse drug events
 
  • Details
  • Full
Options
September 2023
Journal Article
Title

MultiGML: Multimodal graph machine learning for prediction of adverse drug events

Abstract
Adverse drug events constitute a major challenge for the success of clinical trials. Several computational strategies have been suggested to estimate the risk of adverse drug events in preclinical drug development. While these approaches have demonstrated high utility in practice, they are at the same time limited to specific information sources. Thus, many current computational approaches neglect a wealth of information which results from the integration of different data sources, such as biological protein function, gene expression, chemical compound structure, cell-based imaging and others. In this work we propose an integrative and explainable multi-modal Graph Machine Learning approach (MultiGML), which fuses knowledge graphs with multiple further data modalities to predict drug related adverse events and general drug target-phenotype associations. MultiGML demonstrates excellent prediction performance compared to alternative algorithms, including various traditional knowledge graph embedding techniques. MultiGML distinguishes itself from alternative techniques by providing in-depth explanations of model predictions, which point towards biological mechanisms associated with predictions of an adverse drug event. Hence, MultiGML could be a versatile tool to support decision making in preclinical drug development.
Author(s)
Krix, Sophia
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
DeLong, Lauren
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Madan, Sumit  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Domingo Fernández, Daniel  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Ahmad, Ashar
Gul, Sheraz
Fraunhofer-Institut für Translationale Medizin und Pharmakologie ITMP  
Zaliani, Andrea  
Fraunhofer-Institut für Translationale Medizin und Pharmakologie ITMP  
Fröhlich, Holger  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Journal
Heliyon  
Open Access
DOI
10.1016/j.heliyon.2023.e19441
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Fraunhofer-Institut für Translationale Medizin und Pharmakologie ITMP  
Keyword(s)
  • Machine learning

  • Knowledge graph

  • Adverse Event

  • Graph Neural Network

  • Graph Attention Network

  • Graph Convolutional Neural Network

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024