• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Modeling the Contact Force in Constrained Human-Robot Collisions
 
  • Details
  • Full
Options
October 12, 2023
Journal Article
Title

Modeling the Contact Force in Constrained Human-Robot Collisions

Abstract
Collaborative robots (cobots) become more and more important in industrial manufacturing as flexible companions, working side by side with humans without safety fences. A key challenge of such workplaces is to guarantee the safety of the human co-workers. The safeguarding Power and Force Limiting, as specified by ISO 10218-2 and ISO/TS 15066, has the objective to protect humans against robot collisions by preventing the robot from exceeding biomechanical limits. Unintended contact such as collisions can occur under unconstrained spatial conditions (a human body part can move freely) or constrained spatial conditions (a human body part is pinched). In particular, collisions under constrained conditions involve a high risk of injury and thus require the robot to stop immediately after detecting the collision. The robot's speed has a significant influence on its stopping behavior, though, and thus on the maximum collision forces that the robot can exert on the human body. Consequently, a safe velocity is required that avoids the robot from exerting forces and pressures beyond the biomechanical limits. Today, such velocities can only be ascertained in costly robot experiments. In this article, we describe a model that enables us to determine the contact forces of a cobot as they occur in constrained collisions. Through simulations, it becomes possible to iteratively determine the maximum safe velocity for a specific contact hazard that occurs under constrained spatial conditions. Experimental tests with different cobots confirm the results of our model, albeit not for all robots. Despite the mixed test results, we strongly believe that our model can significantly improve the reliability of assumptions made today during the planning of cobots.
Author(s)
Herbster, Sebastian
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Behrens, Roland  
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Elkmann, Norbert  
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Journal
Machines  
Open Access
File(s)
machines-11-00955-v2.pdf (4.4 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.3390/machines11100955
10.24406/publica-1992
Language
English
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Fraunhofer Group
Fraunhofer-Verbund Produktion  
Keyword(s)
  • human-robot collaboration

  • robot safety

  • physical contact

  • pinching

  • robot modeling

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024