• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Quantum Reinforcement Learning for Solving a Stochastic Frozen Lake Environment and the Impact of Architecture and Optimizer Choices
 
  • Details
  • Full
Options
2023
Presentation
Title

Quantum Reinforcement Learning for Solving a Stochastic Frozen Lake Environment and the Impact of Architecture and Optimizer Choices

Title Supplement
Presentation held at the 4th International Conference on Quantum Computing and Engineering, 17-22 September 2023, Bellevue, Washington, USA
Author(s)
Dragan, Theodora-Augustina  
Fraunhofer-Institut für Kognitive Systeme IKS  
Monnet, Maureen
Fraunhofer-Institut für Kognitive Systeme IKS  
Mendl, Christian B.
Technische Universität München  
Lorenz, Jeanette Miriam  orcid-logo
Fraunhofer-Institut für Kognitive Systeme IKS  
Project(s)
QACI-K7
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie  
Conference
Quantum Week 2023  
International Conference on Quantum Computing and Engineering 2023  
Workshop "Quantum Artificial Intelligence" 2023  
DOI
10.24406/publica-1939
File(s)
Dragan_QuantumReinforcementLearningToSolveAStochasticFrozenLake_ 2309_QW_Vortrag.pdf (1.4 MB)
Rights
Under Copyright
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • quantum reinforcement learning

  • proximal policy optimization

  • frozen lake

  • expressibility

  • entanglement capability

  • effective dimension

  • parametrised quantum circuits

  • quantum metrics

  • encoding

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024