• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Quantum Reinforcement Learning for Solving a Stochastic Frozen Lake Environment and the Impact of Architecture and Optimizer Choices
 
  • Details
  • Full
Options
2023
Presentation
Title

Quantum Reinforcement Learning for Solving a Stochastic Frozen Lake Environment and the Impact of Architecture and Optimizer Choices

Title Supplement
Presentation held at the 4th International Conference on Quantum Computing and Engineering, 17-22 September 2023, Bellevue, Washington, USA
Author(s)
Dragan, Theodora-Augustina  
Fraunhofer-Institut für Kognitive Systeme IKS  
Monnet, Maureen
Fraunhofer-Institut für Kognitive Systeme IKS  
Mendl, Christian B.
Technische Universität München  
Lorenz, Jeanette Miriam  orcid-logo
Fraunhofer-Institut für Kognitive Systeme IKS  
Project(s)
QACI-K7
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie  
Conference
Quantum Week 2023  
International Conference on Quantum Computing and Engineering 2023  
Workshop "Quantum Artificial Intelligence" 2023  
File(s)
Download (1.4 MB)
Rights
Use according to copyright law
DOI
10.24406/publica-1939
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • quantum reinforcement learning

  • proximal policy optimization

  • frozen lake

  • expressibility

  • entanglement capability

  • effective dimension

  • parametrised quantum circuits

  • quantum metrics

  • encoding

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024