• English
  • Deutsch
  • Log In
    Password Login
    Have you forgotten your password?
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Fairness in Face Presentation Attack Detection
 
  • Details
  • Full
Options
2024
Journal Article
Title

Fairness in Face Presentation Attack Detection

Abstract
Face recognition (FR) algorithms have been proven to exhibit discriminatory behaviors against certain demographic and non-demographic groups, raising ethical and legal concerns regarding their deployment in real-world scenarios. Despite the growing number of fairness studies in FR, the fairness of face presentation attack detection (PAD) has been overlooked, mainly due to the lack of appropriately annotated data. To avoid and mitigate the potential negative impact of such behavior, it is essential to assess the fairness in face PAD and develop fair PAD models. To enable fairness analysis in face PAD, we present a Combined Attribute Annotated PAD Dataset (CAADPAD), offering seven human-annotated attribute labels. Then, we comprehensively analyze the fairness of PAD and its relation to the nature of the training data and the Operational Decision Threshold Assignment (ODTA) through a set of face PAD solutions. Additionally, we propose a novel metric, the Accuracy Balanced Fairness (ABF), that jointly represents both the PAD fairness and the absolute PAD performance. The experimental results pointed out that female and faces with occluding features (e.g. eyeglasses, beard, etc.) are relatively less protected than male and non-occlusion groups by all PAD solutions. To alleviate this observed unfairness, we propose a plug-and-play data augmentation method, FairSWAP, to disrupt the identity / semantic information and encourage models to mine the attack clues. The extensive experimental results indicate that FairSWAP leads to betterperforming and fairer face PADs in 10 out of 12 investigated cases.
Author(s)
Fang, Meiling  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Yang, Wufei
TU Darmstadt, Fachgebiet Graphisch-Interaktive Systeme  
Kuijper, Arjan  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
S̆truc, Vitomir
University of Ljubljana, Faculty of Electrical Engineering
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Journal
Pattern recognition  
Project(s)
Next Generation Biometric Systems  
Next Generation Biometric Systems  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Hessisches Ministerium für Wissenschaft und Kunst -HMWK-  
Open Access
DOI
10.1016/j.patcog.2023.110002
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Research Line: Computer vision (CV)

  • Research Line: Human computer interaction (HCI)

  • Research Line: Machine learning (ML)

  • LTA: Interactive decision-making support and assistance systems

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • Biometrics

  • Face recognition

  • Spoofing attacks

  • Fairness

  • Information security

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024