Options
2023
Journal Article
Title
Growing axons: Greedy learning of neural networks with application to function approximation
Abstract
We propose a new method for learning deep neural network models, which is based on a greedy learning approach: we add one basis function at a time, and a new basis function is generated as a non-linear activation function applied to a linear combination of the previous basis functions. Such a method (growing deep neural network by one neuron at a time) allows us to compute much more accurate approximants for several model problems in function approximation.
Author(s)