• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Multi-modal Emotion Categorization in Oral History Interviews
 
  • Details
  • Full
Options
July 2023
Master Thesis
Title

Multi-modal Emotion Categorization in Oral History Interviews

Abstract
This thesis proposes a multi-label classification approach using the Multimodal Transformer (MulT) [80] to perform multi-modal emotion categorization on a dataset of oral histories archived at the Haus der Geschichte (HdG). Prior uni-modal emotion classification experiments conducted on the novel HdG dataset provided less than satisfactory results. They uncovered issues such as class imbalance, ambiguities in emotion perception between annotators, and lack of representative training data to perform transfer learning [28]. Hence, the objectives of this thesis were to achieve better results by performing a multi-modal fusion and resolving the problems arising from class imbalance and annotator-induced bias in emotion perception. A further objective was to assess the quality of the novel HdG dataset and benchmark the results using SOTA techniques. Through a literature survey on the challenges, models, and datasets related to multi-modal emotion recognition, we created a methodology utilizing the MulT along with a multi-label classification approach. This approach produced a considerable improvement in the overall emotion recognition by obtaining an average AUC of 0.74 and Balanced-accuracy of 0.70 on the HdG dataset, which is comparable to state-of-the-art (SOTA) results on other datasets. In this manner, we were also able to benchmark the novel HdG dataset as well as introduce a novel multi-annotator learning approach to understand each annotator’s relative strengths and weaknesses for emotion perception. Our evaluation results highlight the potential benefits of the novel multi-annotator learning approach in improving overall performance by resolving the problems arising from annotator-induced bias and variation in the perception of emotions. Complementing these results, we performed a further qualitative analysis of the HdG annotations with a psychologist to study the ambiguities found in the annotations. We conclude that the ambiguities in annotations may have resulted from a combination of several socio-psychological factors and systemic issues associated with the process of creating these annotations. As these problems are also present in most multi-modal emotion recognition datasets, we conclude that the domain could benefit from a set of annotation guidelines to create standardized datasets.
Thesis Note
Bonn-Rhein-Sieg, Hochschule, Master Thesis, 2023
Author(s)
Viswanath, Anargh
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Advisor(s)
Plöger, Paul Gerhard
Houben, Sebastian
Gref, Michael  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Hassan, Teena
File(s)
Download (66.78 KB)
Rights
Use according to copyright law
DOI
10.24406/publica-1893
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024