• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Thermal interdiffusion, microstructure and contact resistivity of NiOx/Ni/p+ poly-Si layer systems for perovskite/TOPCon tandem solar cells during annealing processes
 
  • Details
  • Full
Options
October 2023
Journal Article
Title

Thermal interdiffusion, microstructure and contact resistivity of NiOx/Ni/p+ poly-Si layer systems for perovskite/TOPCon tandem solar cells during annealing processes

Abstract
In a recently published article (Lange et al., 2023) [1], we envisioned and discussed a tandem solar cell concept based on a perovskite/TOPCon architecture in p-i-n configuration, that utilizes a p+/n+ polycrystalline silicon (poly-Si) tunnel junction and NiOx as hole transport material of the perovskite top cell. A direct contact of NiOx to p+ poly-Si is inevitable in such a device. We investigated that junction and reported how the contact resistivity of the NiOx/p+ poly-Si junction can be improved by orders of magnitudes by intentionally inserting a nm-thin metallic Ni interlayer at that interface through the formation of nickel silicide. In this contribution, we present comprehensive data on layer stack morphology, composition and interdiffusion and the impact on the measured contact resistivity based on (scanning) transmission electron microscopy (STEM) coupled with energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) of model samples as well as the real contact structures. Diffusion and reaction processes in the NiOx/Ni/p+ poly-Si layer stack are investigated during the annealing in the temperature range between 100 °C and 500 °C for varying Ni interlayer thicknesses of 0, 1.0 and 2.0 nm. Furthermore, two NiOx syntheses routes are investigated: sputter deposition (s-NiOx) and a wet-chemical approach (wc-NiOx). We correlate the improvement of contact resistivity for both systems and temperatures <300 °C in regard to contacts without metallic Ni interlayer with the observation of pinhole formation within the SiOz. We have observed that annealing the Ag/s-NiOx junctions above 300 °C under ambient air leads to rectifying contacts and high contact resistivities due to excessive interdiffusion of Ni, O and Ag.
Author(s)
Lange, Stefan
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS  
Fett, Bastian  
Fraunhofer-Institut für Silicatforschung ISC  
Kabakli, Özde Seyma
Fraunhofer-Institut für Solare Energiesysteme ISE  
Hähnel, Angelika
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS  
Adner, David  
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS  
Kroyer, Thomas  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Bogati, Shankar  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Schulze, Patricia  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Herbig, Bettina  
Fraunhofer-Institut für Silicatforschung ISC  
Hagendorf, Christian  
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS  
Sextl, Gerhard  
Fraunhofer-Institut für Silicatforschung ISC  
Mandel, Karl-Sebastian  
Fraunhofer-Institut für Silicatforschung ISC  
Journal
Solar energy materials and solar cells  
DOI
10.1016/j.solmat.2023.112514
Language
English
Fraunhofer-Institut für Silicatforschung ISC  
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • Contact resistivity

  • Nickel oxide

  • Nickel silicide

  • Perovskite/TOPcon tandem solar cells

  • Tunnel diode

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024