Options
2023
Journal Article
Title
Combining Daily Sensor Observations and Spatial LiDAR Data for Mapping Snow Water Equivalent in a SubāAlpine Forest
Abstract
Snow interacts with its environment in many ways and thus has a highly heterogeneous spatial and temporal variability. Therefore, modeling snow variability is difficult, especially in forested environments. To increase the understanding of the spatioātemporal variability of snow and to validate snow models, reliable observation data at similar spatial and temporal scales is needed. For these purposes, airborne LiDAR surveys or time series derived from groundābased snow sensors are commonly used. However, these are limited either to one point in space or in time. A new, extensive data set of daily snow variability in a subāalpine forest in the Alptal valley, Switzerland is presented. The core data set consists of a dense sensor network, repeated highāresolution LiDAR data acquired using a fixedāwing UAV, and manual snow depth and snow density measurements. Using machine learning algorithms, four distinct spatial clusters of similar snow depth dynamics are determined. By combining these spatial clusters with the observed snow depth time series, daily highāresolution maps of snow depth and snow water equivalent (SWE) are derived. These products are the first to our knowledge that provide spatioātemporally continuous snow depth and SWE based almost exclusively on field data. The presented workflow is transferrable to different regions, climates and scales. Moreover, the results allow future field campaigns to find representative sensor locations and target their LiDAR surveys to derive similar continuous products with less involved effort.
Author(s)