• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Federated Learning via Decentralized Dataset Distillation in Resource-Constrained Edge Environments
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Federated Learning via Decentralized Dataset Distillation in Resource-Constrained Edge Environments

Abstract
In federated learning, all networked clients contribute to the model training cooperatively. However, with model sizes increasing, even sharing the trained partial models often leads to severe communication bottlenecks in underlying networks, especially when communicated iteratively. In this paper, we introduce a federated learning framework FedD3 requiring only one-shot communication by integrating dataset distillation instances. Instead of sharing model updates in other federated learning approaches, FedD3 allows the connected clients to distill the local datasets independently, and then aggregates those decentralized distilled datasets (e.g. a few unrecognizable images) from networks for model training. Our experimental results show that FedD3 significantly outperforms other federated learning frameworks in terms of needed communication volumes, while it provides the additional benefit to be able to balance the trade-off between accuracy and communication cost, depending on usage scenario or target dataset. For instance, for training an AlexNet model on CIFAR-10 with 10 clients under nonindependent and identically distributed (Non-IID) setting, FedD3 can either increase the accuracy by over 71% with a similar communication volume, or save 98% of communication volume, while reaching the same accuracy, compared to other one-shot federated learning approaches.
Author(s)
Song, Rui
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Liu, Dai
Technische Universität München  
Chen, Dave Zhenyu
Technische Universität München  
Festag, Andreas  
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Trinitis, Carsten
Technische Universität München  
Schulz, Martin
Technische Universität München  
Knoll, Alois
Technische Universität München  
Mainwork
IJCNN 2023, International Joint Conference on Neural Networks. Conference Proceedings  
Project(s)
KI im Verkehr Ingolstadt
5G Innovation Concept Ingolstadt
Funder
Bundesministerium für Verkehr und digitale Infrastruktur -BMVI-, Deutschland  
Bundesministerium für Verkehr und digitale Infrastruktur -BMVI-, Deutschland  
Conference
International Joint Conference on Neural Networks 2023  
DOI
10.1109/IJCNN54540.2023.10191879
Language
English
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Keyword(s)
  • federated learning

  • model training

  • dataset distillation

  • artificial intelligence

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024