• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Surface‐Mediated Charge Transfer of Photogenerated Carriers in Diamond
 
  • Details
  • Full
Options
2023
Journal Article
Title

Surface‐Mediated Charge Transfer of Photogenerated Carriers in Diamond

Abstract
Solvated electrons are highly reductive chemical species whose chemical properties remain largely unknown. Diamond materials are proposed as a promising emitter of solvated electrons and visible light excitation would enable solar-driven CO2 or N2 reductions reactions in aqueous medium. But sub-bandgap excitation remains challenging. In this work, the role of surface states on diamond materials for charge separation and emission in both gaseous and aqueous environments from deep UV to visible light excitation is elucidated. Four different X-ray and UV-vis spectroscopy methods are applied to diamond materials with different surface termination, doping and crystallinity. Surface states are found to dominate sub-bandgap charge transfer. However, the surface charge separation is drastically reduced for boron-doped diamond due to a very high density of bulk defects. In a gaseous atmosphere, the oxidized diamond surface maintains a negative electron affinity, allowing charge emission, due to remaining hydrogenated and hydroxylated groups. In an aqueous electrolyte, a photocurrent for illumination down to 3.5 eV is observed for boron-doped nanostructured diamond, independent of the surface termination. This study opens new perspectives on photo-induced interfacial charge transfer processes from metal-free semiconductors such as diamonds.
Author(s)
Chemin, Arsene
Helmholtz-Zentrum Berlin für Materialien und Energie
Levine, Igal
Helmholtz-Zentrum Berlin für Materialien und Energie
Rusu, Marin
Helmholtz-Zentrum Berlin für Materialien und Energie
Vaujour, Remi
Ecole Normal Superieure de Lyon
Knittel, Peter  orcid-logo
Fraunhofer-Institut für Angewandte Festkƶrperphysik IAF  
Reinke, Philipp  
Fraunhofer-Institut für Angewandte Festkƶrperphysik IAF  
Hinrichs, Karsten
Leibniz-Institut für Analytische Wissenschaften
Unold, Thomas
Helmholtz-Zentrum Berlin für Materialien und Energie
Dittrich, Thomas
Helmholtz-Zentrum Berlin für Materialien und Energie
Petit, Tristan
Helmholtz-Zentrum Berlin für Materialien und Energie
Journal
Small methods  
Open Access
DOI
10.1002/smtd.202300423
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Angewandte Festkƶrperphysik IAF  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
Ā© 2024