• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Hybrid ML for Parameter Prediction in Production
 
  • Details
  • Full
Options
July 18, 2023
Journal Article
Title

Hybrid ML for Parameter Prediction in Production

Abstract
In the past, research in the production domain was driven by mathematical and physical description of production technologies. Over the last years, data-driven approaches like machine learning (ML) and artificial intelligence (AI) gave the research a new direction. Often, already existing knowledge is neglected when using data-driven approaches resulting in models that do not represent the best possible results. By combining these two approaches all available knowledge is used generating the best possible model. This combination is called hybrid modeling. In this paper, hybrid ML as part of hybrid modeling is introduced and the benefits and challenges using hybrid ML for the prediction of process parameters in the production domain are demonstrated.
Author(s)
Dorißen, Jonas  
Fraunhofer-Institut für Produktionstechnologie IPT  
Heymann, Henrik  orcid-logo
Fraunhofer-Institut für Produktionstechnologie IPT  
Schmitt, Robert H.  
Fraunhofer-Institut für Produktionstechnologie IPT  
Journal
Procedia CIRP  
Project(s)
AI-supported, generative 3D-Printing  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Conference on Intelligent Computation in Manufacturing Engineering 2022  
Open Access
File(s)
Download (546.05 KB)
Rights
CC BY-NC-ND 4.0: Creative Commons Attribution-NonCommercial-NoDerivatives
DOI
10.1016/j.procir.2023.06.141
10.24406/publica-1850
Language
English
Fraunhofer-Institut für Produktionstechnologie IPT  
Keyword(s)
  • Hybrid ML

  • Hybrid modeling

  • Machine learning

  • Artificial intelligence

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024