• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Principles of Forgetting in Domain-Incremental Semantic Segmentation in Adverse Weather Conditions
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Principles of Forgetting in Domain-Incremental Semantic Segmentation in Adverse Weather Conditions

Abstract
Deep neural networks for scene perception in automated vehicles achieve excellent results for the domains they were trained on. However, in real-world conditions, the domain of operation and its underlying data distribution are subject to change. Adverse weather conditions, in particular, can significantly decrease model performance when such data are not available during training. Additionally, when a model is incrementally adapted to a new domain, it suffers from catastrophic forgetting, causing a significant drop in performance on previously observed domains. Despite recent progress in reducing catastrophic forgetting, its causes and effects remain obscure. Therefore, we study how the representations of semantic segmentation models are affected during domain-incremental learning in adverse weather conditions. Our experiments and representational analyses indicate that catastrophic forgetting is primarily caused by changes to low-level features in domain-incremental learning and that learning more general features on the source domain using pre-training and image augmentations leads to efficient feature reuse in subsequent tasks, which drastically reduces catastrophic forgetting. These findings highlight the importance of methods that facilitate generalized features for effective continual learning algorithms.
Author(s)
Kalb, Tobias
Beyerer, Jürgen  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023. Proceedings  
Conference
Conference on Computer Vision and Pattern Recognition 2023  
DOI
10.1109/cvpr52729.2023.01869
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • Transfer

  • meta

  • low-shot

  • continual

  • long-tail learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024