Options
August 2023
Book Article
Title
Limits and Prospects of Big Data and Small Data Approaches in AI Applications
Abstract
The renaissance of artificial intelligence (AI) in the last decade can be credited to several factors, but chief among these is the ever-increasing availability and miniaturization of computational resources. This process has contributed to the rise of ubiquitous computing via popularizing smart devices and the Internet of Things in everyday life. In turn, this has resulted in the generation of increasingly enormous amounts of data.
The tech giants are harvesting and storing data on their clients’ behavior and, at the same time, introducing concerns about data privacy and protection. Suddenly, such an abundance of data and computing power, which was unimaginable a few decades ago, has caused a revival of old and the invention of new machine learning paradigms, like Deep Learning.
Artificial intelligence has undergone a technological breakthrough in various fields, achieving better than human performance in many areas (such as vision, board games etc.). More complex tasks require more sophisticated algorithms that need more and more data.
It has often been said that data is becoming a resource that is "more valuable than oil"; however, not all data is equally available and obtainable. Big data can be described by using the "four Vs"; data with immense velocity, volume, variety, and low veracity. In contrast, small data do not possess any of those qualities; they are limited in size and nature and are observed or produced in a controlled manner.
Big data, along with powerful computing and storage resources, allow “black box” AI algorithms for various problems previously deemed unsolvable. One could create AI applications even without the underlying expert knowledge, assuming there are enough data and the right tools available (e.g. end-to-end speech recognition and generation, image and object recognition).
There are numerous fields in science, industry and everyday life where AI has vast potential. However, due to the lack of big data, application is not straightforward or even possible. A good example is AI in medicine, where an AI system is intended to assist physicians in diagnosing and treating rare or previously never observed conditions, and there is no or an insufficient amount of data for reliable AI deployment.
Both big and small data concepts have limitations and prospects for different fields of application. This paper will try to identify and present them by giving real-world examples in various AI fields.
The tech giants are harvesting and storing data on their clients’ behavior and, at the same time, introducing concerns about data privacy and protection. Suddenly, such an abundance of data and computing power, which was unimaginable a few decades ago, has caused a revival of old and the invention of new machine learning paradigms, like Deep Learning.
Artificial intelligence has undergone a technological breakthrough in various fields, achieving better than human performance in many areas (such as vision, board games etc.). More complex tasks require more sophisticated algorithms that need more and more data.
It has often been said that data is becoming a resource that is "more valuable than oil"; however, not all data is equally available and obtainable. Big data can be described by using the "four Vs"; data with immense velocity, volume, variety, and low veracity. In contrast, small data do not possess any of those qualities; they are limited in size and nature and are observed or produced in a controlled manner.
Big data, along with powerful computing and storage resources, allow “black box” AI algorithms for various problems previously deemed unsolvable. One could create AI applications even without the underlying expert knowledge, assuming there are enough data and the right tools available (e.g. end-to-end speech recognition and generation, image and object recognition).
There are numerous fields in science, industry and everyday life where AI has vast potential. However, due to the lack of big data, application is not straightforward or even possible. A good example is AI in medicine, where an AI system is intended to assist physicians in diagnosing and treating rare or previously never observed conditions, and there is no or an insufficient amount of data for reliable AI deployment.
Both big and small data concepts have limitations and prospects for different fields of application. This paper will try to identify and present them by giving real-world examples in various AI fields.
Author(s)