• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Generation of Synthetic Data to Improve Security Monitoring for Cyber-Physical Production Systems
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Generation of Synthetic Data to Improve Security Monitoring for Cyber-Physical Production Systems

Abstract
Machine learning based security monitoring can be used to detect cyberattacks and malfunctions in cyberphysical production systems. Acquiring real data sets for training machine learning algorithms is a problem due to high costs, low data quality, data diversity, and the violation of privacy policies. This paper introduces CyberSyn, a novel approach to generate synthetic data sets for machine learning based security monitoring systems. The generated data sets are analyzed using data quality metrics. Two scenarios from process manufacturing and industrial communication networks are used to evaluate the introduced approach. The proposed approach is able to generate synthetic data sets for both scenarios
Author(s)
Specht, Felix  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Otto, Jens  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Ratz, Daniel
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
IEEE 21st International Conference on Industrial Informatics, INDIN 2023  
Conference
International Conference on Industrial Informatics 2023  
DOI
10.1109/indin51400.2023.10218171
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • synthetic data sets

  • industrial control systems

  • machine learning

  • cybersecurity

  • cyber-physical production systems

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024