• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Efficient Production Scheduling by Exploiting Repetitive Product Configurations
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Efficient Production Scheduling by Exploiting Repetitive Product Configurations

Abstract
We consider the problem of scheduling production jobs on a single machine with sequence dependent family setup times and individual job deadlines. Given a set of jobs, the goal is to minimize the total time to process all jobs while every job meets its deadline. We study algorithms that compute an exact solution to the problem. Motivated by one example use case, we exploit a natural structural observation that occurs in many production settings: the number of product configurations may be significantly smaller than the total number of jobs.We identify an algorithm that is efficient in this setting in terms of performance. We experimentally evaluate its running time and compare it with two other natural approaches of exact job scheduling.
Author(s)
Grüttemeier, Niels
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Balzereit, Kaja  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Soni, Nehal
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Bunte, Andreas  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
IEEE 21st International Conference on Industrial Informatics, INDIN 2023  
Conference
International Conference on Industrial Informatics 2023  
DOI
10.1109/indin51400.2023.10218249
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • scheduling

  • NP-hard problem

  • exact algorithms

  • experimental evaluation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024