• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Scaling effects of fixed-wing ground-generation airborne wind energy systems
 
  • Details
  • Full
Options
2022
Journal Article
Title

Scaling effects of fixed-wing ground-generation airborne wind energy systems

Abstract
While some airborne wind energy system (AWES) companies aim at small, temporary or remote off-grid markets, others aim at utility-scale, multi-megawatt integration into the electricity grid. This study investigates the scaling effects of single-wing, ground-generation AWESs from small- to utility-scale systems, subject to realistic 10min, onshore and offshore wind conditions derived from a numerical mesoscale Weather Research And Forecasting (WRF) model. To reduce computational cost, vertical wind velocity profiles are grouped into 10 clusters using k-means clustering. Three representative profiles from each cluster are implemented into a nonlinear AWES optimal control model to determine power-optimal trajectories. We compare the effects of three different aircraft masses and two sets of nonlinear aerodynamic coefficients for aircraft with wing areas ranging from 10 to 150m2 on operating parameters and flight trajectories. We predict size- and mass-dependent AWES power curves, annual energy production (AEP) and capacity factors (cf) and compare them to a quasi-steady-state reference model. Instantaneous force, tether-reeling speed and power fluctuations as well as power losses associated with tether drag and system mass are quantified.
Author(s)
Sommerfeld, Markus
Dörenkämper, Martin  
Fraunhofer-Institut für Windenergiesysteme IWES  
Schutter, Jochem de
Crawford, Curran A.
Journal
Wind energy science : WES  
Open Access
DOI
10.5194/wes-7-1847-2022
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Windenergiesysteme IWES  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024