• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Predictive Quality Modeling for Ultra-Short-Pulse Laser Structuring utilizing Machine Learning
 
  • Details
  • Full
Options
May 2, 2023
Journal Article
Title

Predictive Quality Modeling for Ultra-Short-Pulse Laser Structuring utilizing Machine Learning

Abstract
Laser structuring offers precision and versatility for material processing but holds potential for optimization due to high-energy consumption and long production-times. Based on a process parameter study, we utilize Machine Learning and multi-modal data fusion of process parameters, high-frequency monitoring data and workpiece properties. We perform a benchmarking to analyze how data and algorithm characteristics impact modeling accuracy. We show that given enough data, ensembles achieve high accuracy and robustness and observe that accuracy strongly depends on initial workpiece properties. The higher the influence of laser structuring, the more superior is the inclusion of time-series features extracted from monitoring data.
Author(s)
Leyendecker, Lars  orcid-logo
Fraunhofer-Institut für Produktionstechnologie IPT  
Zuric, Milena  
Fraunhofer-Institut für Lasertechnik ILT  
Nazar, Muhammad Atique
Fraunhofer-Institut für Produktionstechnologie IPT  
Johannes, Karl
Fraunhofer-Institut für Produktionstechnologie IPT  
Schmitt, Robert  
Fraunhofer-Institut für Produktionstechnologie IPT  
Journal
Procedia CIRP  
Conference
Conference on Modeling of Machining Operations 2023  
Open Access
DOI
10.1016/j.procir.2023.03.047
Language
English
Fraunhofer-Institut für Lasertechnik ILT  
Fraunhofer-Institut für Produktionstechnologie IPT  
Keyword(s)
  • Laser Processing

  • Laser Structuring

  • Process Optimization

  • Soft Sensors

  • Machine Learning

  • Predictive Quality

  • Time-Series Feature Extraction

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024