• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Multi-sensor data fusion using deep learning for bulky waste image classification
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Multi-sensor data fusion using deep learning for bulky waste image classification

Abstract
Deep learning techniques are commonly utilized to tackle various computer vision problems, including recognition, segmentation, and classification from RGB images. With the availability of a diverse range of sensors, industry-specific datasets are acquired to address specific challenges. These collected datasets have varied modalities, indicating that the images possess distinct channel numbers and pixel values that have different interpretations. Implementing deep learning methods to attain optimal outcomes on such multimodal data is a complicated procedure. To enhance the performance of classification tasks in this scenario, one feasible approach is to employ a data fusion technique. Data fusion aims to use all the available information from all sensors and integrate them to obtain an optimal outcome. This paper investigates early fusion, intermediate fusion, and late fusion in deep learning models for bulky waste image classification. For training and evaluation of the models, a multimodal dataset is used. The dataset consists of RGB, hyperspectral Near Infrared (NIR), Thermography, and Terahertz images of bulky waste. The results of this work show that multimodal sensor fusion can enhance classification accuracy compared to a single-sensor approach for the used dataset. Hereby, late fusion performed the best with an accuracy of 0.921 compared to intermediate and early fusion, on our test data.
Author(s)
Bihler, Manuel
Roming, Lukas
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Jiang, Yifan
Afifi, Ahmed J.
Aderhold, Jochen  
Fraunhofer-Institut für Holzforschung Wilhelm-Klauditz-Institut WKI  
Cibiraite-Lukenskiene, Dovile
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Lorenz, Sandra
Gloaguen, Richard
Gruna, Robin  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Heizmann, Michael
Mainwork
Automated Visual Inspection and Machine Vision V  
Project(s)
Altholzgewinnung aus Sperrmüll durch Künstliche Intelligenz und Bildverarbeitung im VIS-, IR- und Terahertz-Bereich. Teilprojekt Zwei (ASKIVIT-Thermo) mit dem Titel: Versuche zur Erkennung von Holz und Holzwerkstoffen in Sperrmüll mittels aktiver Wärmefluss-Thermographie
Funder
Bundesministerium für Ernährung und Landwirtschaft -BMEL-, Berlin  
Conference
Conference "Automated Visual Inspection and Machine Vision" 2023  
DOI
10.1117/12.2673838
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Fraunhofer-Institut für Holzforschung Wilhelm-Klauditz-Institut WKI  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • multispectral data

  • data fusion

  • image classification

  • CNN

  • multi-stream model

  • early fusion

  • intermediate fusion

  • late fusion

  • multi-sensor data

  • multimodal data

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024