• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. DGA Detection Using Similarity-Preserving Bloom Encodings
 
  • Details
  • Full
Options
2023
Conference Paper
Title

DGA Detection Using Similarity-Preserving Bloom Encodings

Abstract
The sanitization of concise data samples can be challenging, as they do not provide a clear distinction between sensitive and non-sensitive parts within individual samples. In this context, traditional sanitization and anonymization measures are not applicable. We consider the detection of algorithmically generated domains through machine learning as an example of such a case, where the benign samples may leak sensitive information. Within this scenario, we evaluate the use of a similarity-preserving Bloom encoding technique to obscure the training samples.
Author(s)
Nitz, Lasse  orcid-logo
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Mandal, Avikarsha  
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Mainwork
European Interdisciplinary Cybersecurity Conference, EICC 2023. Proceedings  
Conference
European Interdisciplinary Cybersecurity Conference 2023  
Open Access
DOI
10.1145/3590777.3590795
Language
English
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Keyword(s)
  • Bloom encoding

  • DGA detection

  • privacy-preserving data publishing

  • sanitization

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024