• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Noise2Contrast: Multi-contrast Fusion Enables Self-supervised Tomographic Image Denoising
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Noise2Contrast: Multi-contrast Fusion Enables Self-supervised Tomographic Image Denoising

Abstract
Self-supervised image denoising techniques emerged as convenient methods that allow training denoising models without requiring ground-truth noise-free data. Existing methods usually optimize loss metrics that are calculated from multiple noisy realizations of similar images, e.g., from neighboring tomographic slices. However, those approaches fail to utilize the multiple contrasts that are routinely acquired in medical imaging modalities like MRI or dual-energy CT. In this work, we propose the new self-supervised training scheme Noise2Contrast that combines information from multiple measured image contrasts to train a denoising model. We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss. The trained denoising operator achieves convincing quantitative and qualitative results, outperforming state-of-the-art self-supervised methods by 4.7–11.0%/4.8–7.3% (PSNR/SSIM) on brain MRI data and by 43.6–50.5%/57.1–77.1% (PSNR/SSIM) on dual-energy CT X-ray microscopy data with respect to the noisy baseline. Our experiments on different real measured data sets indicate that Noise2Contrast training generalizes to other multi-contrast imaging modalities.
Author(s)
Wagner, Fabian
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Thies, Mareike
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Pfaff, Laura
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Maul, Noah
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Pechmann, Sabrina
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Gu, Mingxuan
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Utz, Jonas
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Aust, Oliver
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Weidner, Daniela
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Neag, Georgiana
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Uderhardt, Stefan
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Choi, Jang-Hwan
Ewha Womans University, Seoul
Maier, Andreas
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Mainwork
Information Processing in Medical Imaging  
Conference
International Conference on Information Processing in Medical Imaging 2023  
DOI
10.1007/978-3-031-34048-2_59
Language
English
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Keyword(s)
  • Self-supervised denoising

  • Known Operator Learning

  • Contrast Fusion

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024