• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Evaluierung relevanter Messstellen zur Erhöhung der Netztransparenz in Niederspannungsnetzen mittels künstlicher neuronaler Netze
 
  • Details
  • Full
Options
May 25, 2023
Presentation
Title

Evaluierung relevanter Messstellen zur Erhöhung der Netztransparenz in Niederspannungsnetzen mittels künstlicher neuronaler Netze

Title Supplement
Presentation held at ETG Kongress 2023, 25. - 26. Mai 2023, Kassel
Abstract
As part of the ongoing energy transition, smart-metering technology will be installed at the low-voltage level. In addition to the deployment of smart meters, MV/LV transformers, feeders in local substations (SS), or feeders of cable distribution cabinets (CDC) will be equipped with measuring devices. However, more technical approaches are needed to evaluate the decision-making process for the placements of measurements. In this study, optimal locations for measurement devices at low-voltage grids are determined using artificial neural network (ANN) estimations. Time series simulations are computed using secondary data to provide training and test sets. The trained ANNs determine the quality of each measuring location based on estimation errors. The results of the analyses demonstrate that the methodology can support a focused deployment of measurement devices and thus contribute to an increase in grid transparency. Furthermore, measurements must be positioned individually for each LV grid, as the estimation results significantly depend on the underlying secondary data.
Author(s)
Dipp, Marcel
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Thurner, Leon  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Wende-von Berg, Sebastian  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Braun, Martin
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Conference
Energietechnische Gesellschaft (ETG Kongress) 2023  
DOI
10.24406/publica-1624
File(s)
ETG_2023_Messstellen_mdipp.pdf (1.85 MB)
Rights
Under Copyright
Language
German
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024