• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Core temperature estimation of food items based on non-contact thermal and high frequency sensor data with an LSTM network
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Core temperature estimation of food items based on non-contact thermal and high frequency sensor data with an LSTM network

Abstract
In cooking appliances the long-term dependencies of the cooking climate and its complex interaction with the size and structure of the food makes it hard to estimate the current state of the food item, such as its core temperature. In this paper, the inverse problem of estimating the state is solved by a Long Short-Term Memory (LSTM) network which estimates a full probability density of possible states. A k-nearest neighbor (kNN) algorithm is presented as a strong and explainable baseline model.
Author(s)
Kielmann, Felix
Knott, Peter  
Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR  
Koch, Wolfgang
Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE  
Mainwork
Symposium on Sensor Data Fusion: Trends, Solutions, Applications, SDF 2022  
Conference
Symposium on Sensor Data Fusion - Trends, Solutions, Applications 2022  
DOI
10.1109/SDF55338.2022.9931957
Language
English
Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR  
Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE  
Keyword(s)
  • Heat and Mass Transport

  • Inverse Problem

  • Long Short-Term Memory

  • Maxwell Equations

  • Recurrent Neural Network

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024