• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Deep Anomaly Detection on Tennessee Eastman Process Data
 
  • Details
  • Full
Options
2023
Journal Article
Title

Deep Anomaly Detection on Tennessee Eastman Process Data

Abstract
This paper provides the first comprehensive evaluation and analysis of modern (deep-learning-based) unsupervised anomaly detection methods for chemical process data. We focus on the Tennessee Eastman process dataset, a standard litmus test to benchmark anomaly detection methods for nearly three decades. Our extensive study will facilitate choosing appropriate anomaly detection methods in industrial applications. From the benchmark, we conclude that reconstruction-based methods are the methods of choice, followed by generative and forecasting-based methods.
Author(s)
Hartung, Fabian
Franks, Billy Joe
Michels, Tobias
Wagner, Dennis
Liznerski, Philipp
Reithermann, Steffen
Fellenz, Sophie
Jirasek, Fabian
Rudolph, Maja
Neider, Daniel
Leitte, Heike
Song, Chen
Kloepper, Benjamin
Mandt, Stephan
Bortz, Michael  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Burger, Jakob
Hasse, Hans
Kloft, Marius
Journal
Chemie- Ingenieur- Technik  
Open Access
DOI
10.1002/cite.202200238
Additional link
Full text
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • Anomaly detection

  • Benchmark

  • Chemical process data

  • Tennessee Eastman process

  • Time series

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024