• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Plastic Extrusion Process Optimization by Inversion of Stacked Autoencoder Classification Machines
 
  • Details
  • Full
Options
2023
Journal Article
Title

Plastic Extrusion Process Optimization by Inversion of Stacked Autoencoder Classification Machines

Abstract
In the face of climate change and rising energy prices, lowering energy usage of industrial machines is gaining widespread attention. Αpropriate machine settings could lead to reduced production costs and lower environmental impact, while simultaneously maintaining products' quality. However, defining the complex, nonlinear dependencies between these settings and energy usage or quality in manufacturing is often a challenging task. In the presented work, a method for optimized machine settings recommendation is proposed using inverse classification via autoencoders. The algorithm can suggest operation parameters, based on predefined intervals of energy consumption and product properties. The performance is evaluated on data generated by a digital twin of an extrusion process.
Author(s)
Burr, Julia
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Katsaouni, Nikoletta
Just, Daniel  
Fraunhofer-Institut für Chemische Technologie ICT  
Sarishvili, Alex  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Moser, Kevin  
Fraunhofer-Institut für Chemische Technologie ICT  
Journal
Chemie- Ingenieur- Technik  
Open Access
DOI
10.1002/cite.202200211
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Fraunhofer-Institut für Chemische Technologie ICT  
Keyword(s)
  • Stacked autoencoders

  • Digital twin

  • Plastic extrusion

  • Inverse problems

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024