• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. On the Quality and Diversity of Synthetic Face Data and its Relation to the Generator Training Data
 
  • Details
  • Full
Options
2023
Conference Paper
Title

On the Quality and Diversity of Synthetic Face Data and its Relation to the Generator Training Data

Abstract
In recent years, advances in deep learning techniques and large-scale identity-labeled datasets have enabled facial recognition algorithms to rapidly gain performance. However, due to privacy issues, ethical concerns, and regulations governing the processing, transmission, and storage of biometric samples, several publicly available face image datasets are being withdrawn by their creators. The reason is that these datasets are mostly crawled from the web with the possibility that not all users had properly consented to processing their biometric data. To mitigate this problem, synthetic face images from generative approaches are motivated to substitute the need for authentic face images to train and test face recognition. In this work, we investigate both the relation between synthetic face image data and the generator authentic training data and the relation between the authentic data and the synthetic data in general under two aspects, i.e. the general image quality and face image quality. The first term refers to perceived image quality and the second measures the utility of a face image for automatic face recognition algorithms. To further quantify these relations, we build the analyses under two terms denoted as the dissimilarity in quality values expressing the general difference in quality distributions and the dissimilarity in quality diversity expressing the diversity in the quality values.
Author(s)
Fu, Biying  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Klemt, Marcel  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Boutros, Fadi  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Mainwork
11th International Workshop on Biometrics and Forensics, IWBF 2023  
Project(s)
Next Generation Biometric Systems  
Next Generation Biometric Systems  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Hessisches Ministerium für Wissenschaft und Kunst -HMWK-  
Conference
International Workshop on Biometrics and Forensics 2023  
DOI
10.1109/IWBF57495.2023.10157014
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Research Line: Computer vision (CV)

  • Research Line: Human computer interaction (HCI)

  • Research Line: Machine learning (ML)

  • LTA: Interactive decision-making support and assistance systems

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • Biometrics

  • Face recognition

  • Quality estimation

  • Image generation

  • Deep learning

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024