• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. A MIMO Radar-based Few-Shot Learning Approach for Human-ID
 
  • Details
  • Full
Options
2022
Conference Paper
Title

A MIMO Radar-based Few-Shot Learning Approach for Human-ID

Abstract
Radar for deep learning-based human identification has become a research area of increasing interest. It has been shown that micro-Doppler (µ-D) can reflect the walking behavior, through capturing the periodic limbs micro-motions. One of the main aspects is maximizing the number of included classes, while considering the real-time and training dataset size constraints. In this paper, a multiple-input-multiple-output (MIMO) radar is used to formulate micro-motion spectrograms of the elevation angular velocity (µ-ω). The effectiveness of concatenating this newly-formulated spectrogram with the commonly used µ-D ones is investigated. To accommodate for non-constrained real walking motion, an adaptive cycle segmentation framework is utilized and a metric learning network is trained on half gait cycles (≈0.5 s). Studies on the effects of various numbers of classes (5-20), different dataset sizes, and varying observation time windows (1-2 s) are conducted. A non-constrained walking dataset of 22 subjects is collected with different aspect angles with respect to the radar. The proposed few-shot learning (FSL) approach achieves a classification error of 11.3 % with only 2 min of training data per subject.
Author(s)
Weller, Pascal
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Aziz, Fady  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Abdulatif, Sherif
Schneider, Urs  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Huber, Marco F.  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Mainwork
30th European Signal Processing Conference, EUSIPCO 2022. Proceedings  
Conference
European Signal Processing Conference 2022  
Link
Link
Language
English
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • few-shot learning

  • human identification

  • micro-motion

  • Radar

  • triplet loss

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024