• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Characterizing Intraindividual Podocyte Morphology In Vitro with Different Innovative Microscopic and Spectroscopic Techniques
 
  • Details
  • Full
Options
2023
Journal Article
Title

Characterizing Intraindividual Podocyte Morphology In Vitro with Different Innovative Microscopic and Spectroscopic Techniques

Abstract
Podocytes are critical components of the glomerular filtration barrier, sitting on the outside of the glomerular basement membrane. Primary and secondary foot processes are characteristic for podocytes, but cell processes that develop in culture were not studied much in the past. Moreover, protocols for diverse visualization methods mostly can only be used for one technique, due to differences in fixation, drying and handling. However, we detected by single-cell RNA sequencing (scRNAseq) analysis that cells reveal high variability in genes involved in cell type-specific morphology, even within one cell culture dish, highlighting the need for a compatible protocol that allows measuring the same cell with different methods. Here, we developed a new serial and correlative approach by using a combination of a wide variety of microscopic and spectroscopic techniques in the same cell for a better understanding of podocyte morphology. In detail, the protocol allowed for the sequential analysis of identical cells with light microscopy (LM), Raman spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Skipping the fixation and drying process, the protocol was also compatible with scanning ion-conductance microscopy (SICM), allowing the determination of podocyte surface topography of nanometer-range in living cells. With the help of nanoGPS Oxyo®, tracking concordant regions of interest of untreated podocytes and podocytes stressed with TGF-β were analyzed with LM, SEM, Raman spectroscopy, AFM and SICM, and revealed significant morphological alterations, including retraction of podocyte process, changes in cell surface morphology and loss of cell-cell contacts, as well as variations in lipid and protein content in TGF-β treated cells. The combination of these consecutive techniques on the same cells provides a comprehensive understanding of podocyte morphology. Additionally, the results can also be used to train automated intelligence networks to predict various outcomes related to podocyte injury in the future.
Author(s)
Kraus, Annalena
INAM Forchheim
Rose, Victoria
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Krüger, René
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Sarau, George  
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Kling, Lasse
INAM Forchheim
Schiffer, Mario
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Christiansen, Silke  
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Müller-Deile, Janina
Friedrich-Alexander-Universität Erlangen-Nürnberg  
Journal
Cells  
Project(s)
Speed Translation-Oriented Progress to Treat FSGS  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Open Access
DOI
10.3390/cells12091245
Language
English
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Keyword(s)
  • single-cell RNA sequencing

  • podocytes

  • foot processes

  • filopodia

  • light microscopy

  • Raman spectroscopy

  • scanning electron microscopy

  • atomic force microscopy

  • scanning ion-conductance microscopy

  • nanoGPS tracking

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024