• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Temperature Prediction of Automotive Battery Systems under Realistic Driving Conditions using Artificial Neural Networks
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Temperature Prediction of Automotive Battery Systems under Realistic Driving Conditions using Artificial Neural Networks

Abstract
The accurate prediction of the battery temperature in an electric vehicle is crucial for an effective thermal management of the battery system. Here, a nonlinear autoregressive exogenous network is used to model the complex thermal behavior of a battery cell. It is trained with conventional driving data and uses input parameters that are easy to obtain. Its accuracy is proven for a wide range of temperatures, showing the simple, general and robust applicability of the approach.
Author(s)
Liebertseder, Johannes  orcid-logo
Fraunhofer-Institut für Chemische Technologie ICT  
Wunsch, Susann
Karlsruhe Institute of Technology -KIT-  
Sonner, Christine
Fraunhofer-Institut für Chemische Technologie ICT  
Berg, Lars-Fredrik
Fraunhofer-Institut für Chemische Technologie ICT  
Doppelbauer, Martin
Fraunhofer-Institut für Chemische Technologie ICT  
Tübke, Jens  
Fraunhofer-Institut für Chemische Technologie ICT  
Mainwork
1st International Conference on Cognitive Mobility, CogMob 2022  
Conference
International Conference on Cognitive Mobility 2022  
DOI
10.1109/CogMob55547.2022.10118237
Language
English
Fraunhofer-Institut für Chemische Technologie ICT  
Keyword(s)
  • Temperature distribution

  • Computational modeling

  • Training data

  • Predictive models

  • Thermal management

  • Electric vehicles

  • Data models

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024