• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Matching Experts to Questions: A Comparison of Recommender Systems
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Matching Experts to Questions: A Comparison of Recommender Systems

Abstract
Community question answering platforms like Stackoverflow are among the most popular interactive environments on the Internet for individuals to share knowledge. Finding experts to answer questions is one of those platforms' major challenges. To this end, we compare SBERT-Rec and LDA-Rec, two recommender system algorithms which are based on the state-of-the-art transformer architecture and well-established probabilistic topic modeling algorithm Latent Dirichlet Allocation, respectively. Our results show that SBERT-Rec significantly outperforms LDA-Rec in terms of average rank score. While SBERT-Rec excels in an open-world scenario with no presumptions about the underlying subjects of the corpus, LDA-Rec carves out distinct and human interpretable topics inside a niche closed-world corpus. Finally, we provide a novel metric for expert matching evaluation that supports partial experts/non-experts annotations.
Author(s)
Stenzel, Marc Robin
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Lübbering, Max  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Ulusay, Bilge
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Uedelhoven, Daniel
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
LWDA 2022 Workshops: FGWM, FGKD, and FGDB. Proceedings  
Conference
Conference "Lernen, Wissen, Daten, Analysen" 2022  
Workshop on Knowledge Discovery, Data Mining and Machine Learning 2022  
Open Access
DOI
10.24406/publica-1335
File(s)
Stenzel_KDML-LWDA_2022_CRC_6193.pdf (654.08 KB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • BERT

  • Community Question Answering

  • Expert Finding

  • Latent Dirichlet Allocation

  • Recommender systems

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024