• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Formation of intermittent covalent bonds at high contact pressure limits superlow friction on epitaxial graphene
 
  • Details
  • Full
Options
2023
Journal Article
Title

Formation of intermittent covalent bonds at high contact pressure limits superlow friction on epitaxial graphene

Abstract
Epitaxial graphene on SiC(0001) exhibits superlow friction due to its weak out-of-plane interactions. Friction-force microscopy with silicon tips shows an abrupt increase of friction by one order of magnitude above a threshold normal force. Density-functional tight-binding simulations suggest that this wearless high-friction regime involves an intermittent sp3 rehybridization of graphene at contact pressure exceeding 10 GPa. The simultaneous formation of covalent bonds with the tip's silica surface and the underlying SiC interface layer establishes a third mechanism limiting the superlow friction on epitaxial graphene, in addition to dissipation in elastic instabilities and in wear processes.
Author(s)
Szczefanowicz, Bartosz
Saarland University
Kuwahara, Takuya  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Filleter, Tobin
University of Toronto
Klemenz, Andreas
Fraunhofer-Institut für Werkstoffmechanik IWM  
Mayrhofer, Leonhard
Fraunhofer-Institut für Werkstoffmechanik IWM  
Bennewitz, Roland
Saarland University
Moseler, Michael  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Journal
Physical review research  
Project(s)
2D Materialien - die Physik von van der Waals [Hetero-]Strukturen  
FOR 5099: Reduktion der Komplexität von Nichtgleichgewichtssystemen  
Funder
Deutsche Forschungsgemeinschaft  
Deutsche Forschungsgemeinschaft  
Open Access
DOI
10.1103/PhysRevResearch.5.L012049
Language
English
Fraunhofer-Institut für Werkstoffmechanik IWM  
Keyword(s)
  • adhesion

  • chemical bonding

  • friction

  • lubrication

  • pressure effects

  • tribology

  • graphene

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024