• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Detecting Tar Contaminated Samples in Road-rubble using Hyperspectral Imaging and Texture Analysis
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Detecting Tar Contaminated Samples in Road-rubble using Hyperspectral Imaging and Texture Analysis

Abstract
Polycyclic aromatic hydrocarbons (PAH) containing tar-mixtures pose a challenge for recycling road rubble, as the tar containing elements have to be extracted and decontaminated for recycling. In this preliminary study, tar, bitumen and minerals are discriminated using a combination of color (RGB) and Hyperspectral Short Wave Infrared (SWIR) cameras. Further, the use of an autoencoder for detecting minerals embedded inside tar- and bitumen mixtures is proposed. Features are extracted from the spectra of the SWIR camera and the texture of the RGB images. For classification, linear discriminant analysis combined with a k-nearest neighbor classification is used. First results show a reliable detection of minerals and positive signs for separability of tar and bitumen. This work is a foundation for developing a sensor-based sorting system for physical separation of tar contaminated samples in road rubble.
Author(s)
Bäcker, Paul
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Maier, Georg  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Gruna, Robin  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Längle, Thomas  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Beyerer, Jürgen  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
OCM 2023, Optical Characterization of Materials. Conference Proceedings  
Conference
International Conference on Optical Characterization of Materials 2023  
Open Access
DOI
10.24406/publica-1183
File(s)
Detecting Tar Contaminated Samples in Road-rubble using Hyperspectral Imaging and Texture Analysis (002).pdf (1.3 MB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • Hyperspectral Imaging

  • Autoencoder

  • Polycyclic Aromatic Hydrocarbons

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024