Options
2023
Conference Paper
Title
Detecting Tar Contaminated Samples in Road-rubble using Hyperspectral Imaging and Texture Analysis
Abstract
Polycyclic aromatic hydrocarbons (PAH) containing tar-mixtures pose a challenge for recycling road rubble, as the tar containing elements have to be extracted and decontaminated for recycling. In this preliminary study, tar, bitumen and minerals are discriminated using a combination of color (RGB) and Hyperspectral Short Wave Infrared (SWIR) cameras. Further, the use of an autoencoder for detecting minerals embedded inside tar- and bitumen mixtures is proposed. Features are extracted from the spectra of the SWIR camera and the texture of the RGB images. For classification, linear discriminant analysis combined with a k-nearest neighbor classification is used. First results show a reliable detection of minerals and positive signs for separability of tar and bitumen. This work is a foundation for developing a sensor-based sorting system for physical separation of tar contaminated samples in road rubble.
Author(s)
Open Access
Rights
CC BY 4.0: Creative Commons Attribution
Language
English