• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Few-parameter learning for a hierarchical perceptual grouping system
 
  • Details
  • Full
Options
2023
Journal Article
Title

Few-parameter learning for a hierarchical perceptual grouping system

Abstract
Perceptual grouping along well-established Gestalt laws provides one set of traditional methods that provide a tiny set of meaningful parameters to be adjusted for each application field. More complex and challenging tasks require a hierarchical setting, where the results aggregated by a first grouping process are later subject to further processing on a larger scale and with more abstract objects. This can be several steps deep. An example from the domain of forestry provides insight into the search for suitable parameter settings providing sufficient performance for the machine-vision module to be of practical use within a larger robotic control setting in this application domain. This sets a stark contrast in comparison to the state-of-the-art deep-learning neural nets, where many millions of obscure parameters must be adjusted properly before the performance suffices. It is the opinion of the author that the huge freedom for possible settings in such a high-dimensional inscrutable parameter space poses an unnecessary risk. Moreover, few-parameter learning is getting along with less training material. Whereas the state-of-the-art networks require millions of images with expert labels, a single image can already provide good insight into the nature of the parameter domain of the Gestalt laws, and a domain expert labeling just a handful of salient contours in said image yields already a proper goal function, so that a well working sweet spot in the parameter domain can be found in a few steps. As compared to the state-of-the-art neural nets, a reduction of six orders of magnitude in the number of parameters results. Almost parameter-free statistical test methods can reduce the number of parameters to be trained further by one order of magnitude, but they are less flexible and currently lack the advantages of hierarchical feature processing.
Author(s)
Michaelsen, Eckart  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Journal
Mathematical biosciences and engineering  
Open Access
DOI
10.3934/mbe.2023411
Additional link
Full text
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • traditional machine vision

  • perceptual grouping

  • parameter adjustment

  • forestry

  • Gestalt laws

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024