• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Short-Term Air Pollution Forecasting Using Embeddings in Neural Networks
 
  • Details
  • Full
Options
2023
Journal Article
Title

Short-Term Air Pollution Forecasting Using Embeddings in Neural Networks

Abstract
Air quality is a highly relevant issue for any developed economy. The high incidence of pollution levels and their impact on human health has attracted the attention of the machine-learning scientific community. We present a study using several machine-learning methods to forecast NO2 concentration using historical pollution data and meteorological variables and apply them to the city of Erfurt, Germany. We propose modelling the time dependency using embedding variables, which enable the model to learn the implicit behaviour of traffic and offers the possibility to elaborate on local events. In addition, the model uses seven meteorological features to forecast the NO2 concentration for the next hours. The forecasting model also uses the seasonality of the pollution levels. Our experimental study shows that promising forecasts can be achieved, especially for holidays and similar occasions which lead to shifts in usual seasonality patterns. While the MAE values of the compared models range from 4.3 to 15, our model achieves values of 4.4 to 7.4 and thus outperforms the others in almost every instance. Those forecasts again can for example be used to regulate sources of pollutants such as, e.g., traffic.
Author(s)
Ramentol, Enislay
Grimm, Stefanie  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Stinzendörfer, Moritz
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Wagner, Andreas
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Journal
Atmosphere  
Project(s)
Verbundprojekt: BML-EcoSys - Bauhaus.MobilityLab; Teilvorhaben: KI-basierte Plattform für das BML-EcoSys  
Funder
Bundesministerium für Wirtschaft und Klimaschutz -BMWK-
Open Access
DOI
10.3390/atmos14020298
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Fraunhofer Group
ICT
Keyword(s)
  • air pollution forecasting

  • neural networks

  • embedding

  • SensorThings API

  • NO2 forecasting

  • IoT sensors

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024