• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Numerical Simulation of Thermal Silicon Dioxide Growth in the Gap between Stacked Wafers
 
  • Details
  • Full
Options
2023
Journal Article
Title

Numerical Simulation of Thermal Silicon Dioxide Growth in the Gap between Stacked Wafers

Abstract
Stacking of wafers for thermal processing enables a strong increase of the throughput and thus offers a high potential for cost reduction in solar cell production. In previous studies, the high temperature stack oxidation (HiTSOx) approach showed promising solar cell results and homogeneous thermal oxide growth over the wafer surface within the stack. In this work, we investigate the thermal oxide growth in the gap between stacked wafers where the wafer surfaces touching each other. We perform finite element method (FEM) simulation to identify the mechanism for the oxygen transport inside the gap and compare the simulated layer thickness to experimental data. In this simulation, the gap height is an important parameter. Therefore, we present a gravimetric-density approach to experimentally determine the gap height. Further, passivated emitter and rear (PERC) solar cells are fabricated using the HiTSOx approach. A high open-circuit voltage of Voc = 694 mV confirms the high quality of the surface passivation achieved in the stack oxidation.
Author(s)
Meßmer, Marius
Fraunhofer-Institut für Solare Energiesysteme ISE  
Emmer, Lena
Fraunhofer-Institut für Solare Energiesysteme ISE  
Wolf, Andreas  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Journal
Solar energy materials and solar cells  
DOI
10.1016/j.solmat.2023.112215
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • Stack oxidation

  • FEM Simulation

  • Silicon dioxide

  • Gap

  • HiTSOx

  • Photovoltaik

  • Silicium-Photovoltaik

  • Charakterisierung von Prozess- und Silicium-Materialien

  • Dotierung und Diffusion

  • Oberflächen: Konditionierung, Passivierung, Lichteinfang

  • Herstellung und Analyse von hocheffizienten Si-Solarzellen

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024