• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Bézier Curve Gaussian Processes
 
  • Details
  • Full
Options
November 18, 2022
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Bézier Curve Gaussian Processes

Title Supplement
Published on arXiv
Abstract
Probabilistic models for sequential data are the basis for a variety of applications concerned with processing timely ordered information. The predominant approach in this domain is given by recurrent neural networks, implementing either an approximate Bayesian approach (e.g. Variational Autoencoders or Generative Adversarial Networks) or a regression-based approach, i.e. variations of Mixture Density networks (MDN). In this paper, we focus on the N-MDN variant, which parameterizes (mixtures of) probabilistic Bézier curves (N-Curves) for modeling stochastic processes. While in favor in terms of computational cost and stability, MDNs generally fall behind approximate Bayesian approaches in terms of expressiveness. Towards this end, we present an approach for closing this gap by enabling full Bayesian inference on top of N-MDNs. For this, we show that N-Curves are a special case of Gaussian processes (denoted as N-GP) and then derive corresponding mean and kernel functions for different modalities. Following this, we propose the use of the N-MDN as a data-dependent generator for N-GP prior distributions. We show the advantages granted by this combined model in an application context, using human trajectory prediction as an example.
Author(s)
Hug, Ronny  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Becker, Stefan  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Hübner, Wolfgang  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Arens, Michael  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Beyerer, Jürgen  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
DOI
10.48550/arXiv.2205.01754
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • Machine Learning

  • ML

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024