• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Robustness in Fatigue Strength Estimation
 
  • Details
  • Full
Options
December 2, 2022
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Robustness in Fatigue Strength Estimation

Title Supplement
Published on arXiv
Abstract
Fatigue strength estimation is a costly manual material characterization process in which state-of-the-art approaches follow a standardized experiment and analysis procedure. In this paper, we examine a modular, Machine Learning-based approach for fatigue strength estimation that is likely to reduce the number of experiments and, thus, the overall experimental costs. Despite its high potential, deployment of a new approach in a real-life lab requires more than the theoretical definition and simulation. Therefore, we study the robustness of the approach against misspecification of the prior and discretization of the specified loads. We identify its applicability and its advantageous behavior over the state-of-the-art methods, potentially reducing the number of costly experiments.
Author(s)
Weichert, Dorina  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Kister, Alexander  
Houben, Sebastian  
Ernis, Gunar  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Wrobel, Stefan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Project(s)
ML2R  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
Workshop on AI to Accelerate Science and Engineering 2023  
Link
Link
DOI
10.48550/arXiv.2212.01136
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Machine Learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024