• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. QMagFace: Simple and Accurate Quality-Aware Face Recognition
 
  • Details
  • Full
Options
2023
Conference Paper
Title

QMagFace: Simple and Accurate Quality-Aware Face Recognition

Abstract
In this work, we propose QMagFace, a simple and effective face recognition solution (QMagFace) that combines a quality-aware comparison score with a recognition model based on a magnitude-aware angular margin loss. The proposed approach includes model-specific face image qualities in the comparison process to enhance the recognition performance under unconstrained circumstances. Exploiting the linearity between the qualities and their comparison scores induced by the utilized loss, our quality-aware comparison function is simple and highly generalizable. The experiments conducted on several face recognition databases and benchmarks demonstrate that the introduced qualityawareness leads to consistent improvements in the recognition performance. Moreover, the proposed QMagFace approach performs especially well under challenging circumstances, such as cross-pose, cross-age, or cross-quality. Consequently, it leads to state-of-the-art performances on several face recognition benchmarks, such as 98.50% on AgeDB, 83.95% on XQLFQ, and 98.74% on CFP-FP. The code for QMagFace is publicly available.
Author(s)
Terhörst, Philipp  
Norwegian University of Science and Technology  
Ihlefeld, Malte
TU Darmstadt, Fachgebiet Graphisch-Interaktive Systeme  
Huber, Marco  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kirchbuchner, Florian  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Raja, Kiran
Norwegian University of Science and Technology  
Kuijper, Arjan  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Mainwork
IEEE Winter Conference on Applications of Computer Vision, WACV 2023. Proceedings  
Project(s)
Next Generation Biometric Systems  
Next Generation Biometric Systems  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Hessisches Ministerium für Wissenschaft und Kunst
Conference
Winter Conference on Applications of Computer Vision 2023  
Open Access
DOI
10.1109/WACV56688.2023.00348
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Research Line: Computer vision (CV)

  • Research Line: Machine learning (ML)

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • Biometrics

  • Face recognition

  • Deep learning

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024