• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. SYN-MAD 2022: Competition on Face Morphing Attack Detection Based on Privacy-aware Synthetic Training Data
 
  • Details
  • Full
Options
2022
Conference Paper
Title

SYN-MAD 2022: Competition on Face Morphing Attack Detection Based on Privacy-aware Synthetic Training Data

Abstract
This paper presents a summary of the Competition on Face Morphing Attack Detection Based on Privacy-aware Synthetic Training Data (SYN-MAD) held at the 2022 International Joint Conference on Biometrics (IJCB 2022). The competition attracted a total of 12 participating teams, both from academia and industry and present in 11 different countries. In the end, seven valid submissions were submitted by the participating teams and evaluated by the organizers. The competition was held to present and attract solutions that deal with detecting face morphing attacks while protecting people’s privacy for ethical and legal reasons. To ensure this, the training data was limited to synthetic data provided by the organizers. The submitted solutions presented innovations that led to outperforming the considered baseline in many experimental settings. The evaluation benchmark is now available at: https://github.com/marcohuber/SYN-MAD-2022.
Author(s)
Huber, Marco  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Boutros, Fadi  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Luu, Anh Thi
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kiran, Raja
Norwegian University of Science and Technology  
Ramachandra, Raghavendra
Norwegian University of Science and Technology  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Neto, Pedro C.
INESC TEC
Goncalves, Tiago J.
INESC TEC
Sequeira, Ana F.
INESC TEC
Cardoso, Jaime S.
INESC TEC
Tremoco, Joao
Yoonik
Lourenco, Miguel
Yoonik
Serra, Sergio
Vaelsys R&D
Cermeno, Eduardo
Vaelsys R&D
Ivanovska, Marija
University of Ljubljana  
Batagelj, Borut
Kronovšek, Andrej
University of Ljubljana  
Peer, Peter
University of Ljubljana  
Štruc, Vitomir
University of Ljubljana  
Mainwork
IEEE International Joint Conference on Biometrics, IJCB 2022  
Project(s)
Next Generation Biometric Systems  
Next Generation Biometric Systems  
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Hessisches Ministerium für Wissenschaft und Kunst
Conference
International Joint Conference on Biometrics 2022  
DOI
10.1109/IJCB54206.2022.10007950
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Research Line: Computer vision (CV)

  • Research Line: Machine learning (ML)

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • Biometrics

  • Deep learning

  • Face recognition

  • Research challenges

  • Morphing attack

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024