Options
2023
Journal Article
Title
Challenges of fabricating catalyst layers for PEM fuel cells using flatbed screen printing
Abstract
In this work, flatbed screen printing is evaluated regarding its capability to produce catalyst layers of PEM fuel cells. In the field of printed electronics, screen printing is regarded as robust and high-throughput coating technology. The possibility of in-plane structuring could be an additional degree of freedom, enabling more complex designs of catalyst layers in the future. In this study, process parameters are varied to investigate their effect on resulting layerthickness, homogeneity, and Pt-loading. With the usage of different screens, the Pt-loading can be adjusted. Additionally, two different pastes with and without water content are investigated. The catalyst paste without water showed a better process stability during printing and performed best under dry conditions (RH = 40%) and worst under wet conditions (RH = 100%) during electrochemical in-situ testing. Overall, the reproducibility of the CCM production process was verified. The viscosity of the catalyst paste with 19.55 wt% water in solvent was higher compared to the paste without water. Furthermore, a carbon paste (Pt-free) is developed in a similar viscosity range as the catalyst pastes. The main challenge of screen printing process development lies in the paste optimizationto prevent evaporation effects over time, ensuring sufficient wetting of the paste on the substrate and sufficient fuel cell performance.
Author(s)
Open Access
Rights
CC BY 4.0: Creative Commons Attribution
Language
English