• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Unsupervised Face Morphing Attack Detection via Self-paced Anomaly Detection
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Unsupervised Face Morphing Attack Detection via Self-paced Anomaly Detection

Abstract
The supervised-learning-based morphing attack detection (MAD) solutions achieve outstanding success in dealing with attacks from known morphing techniques and known data sources. However, given variations in the morphing attacks, the performance of supervised MAD solutions drops significantly due to the insufficient diversity and quantity of the existing MAD datasets. To address this concern, we propose a completely unsupervised MAD solution via self-paced anomaly detection (SPL-MAD) by leveraging the existing large-scale face recognition (FR) datasets and the unsupervised nature of convolutional autoencoders. Using general FR datasets that might contain unintentionally and unlabeled manipulated samples to train an autoencoder can lead to a diverse reconstruction behavior of attack and bona fide samples. We analyze this behavior empirically to provide a solid theoretical ground for designing our unsupervised MAD solution. This also results in proposing to integrate our adapted modified self-paced learning paradigm to enhance the reconstruction error separability between the bona fide and attack samples in a completely unsupervised manner. Our experimental results on a diverse set of MAD evaluation datasets show that the proposed unsupervised SPL-MAD solution outperforms the overall performance of a wide range of supervised MAD solutions and provides higher generalizability on unknown attacks. Training codes and pre-trained models are publicly released.
Author(s)
Fang, Meiling  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Boutros, Fadi  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Mainwork
IEEE International Joint Conference on Biometrics, IJCB 2022  
Project(s)
Next Generation Biometric Systems  
Next Generation Biometric Systems  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Hessisches Ministerium für Wissenschaft und Kunst
Conference
International Joint Conference on Biometrics 2022  
Open Access
DOI
10.1109/IJCB54206.2022.10008003
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Research Line: Computer vision (CV)

  • Research Line: Machine learning (ML)

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • Biometrics

  • Deep learning

  • Face recognition

  • Attack detection

  • Morphing attack

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024