• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. CQELS 2.0: Towards a unified framework for semantic stream fusion
 
  • Details
  • Full
Options
2022
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

CQELS 2.0: Towards a unified framework for semantic stream fusion

Title Supplement
Published on arXiv
Abstract
We present CQELS 2.0, the second version of Continuous Query Evaluation over Linked Streams. CQELS 2.0 is a platform-agnostic federated execution framework towards semantic stream fusion. In this version, we introduce a novel neuralsymbolic stream reasoning component that enables specifying deep neural network (DNN) based data fusion pipelines via logic rules with learnable probabilistic degrees as weights. As a platform-agnostic framework, CQELS 2.0 can be implemented for devices with different hardware architectures (from embedded devices to cloud infrastructures). Moreover, this version also includes an adaptive federator that allows CQELS instances on different nodes in a network to coordinate their resources to distribute processing pipelines by delegating partial workloads to their peers via subscribing continuous queries.
Author(s)
Le-Tuan, Anh
Technische Universität Berlin  
Nguyen-Duc, Manh
Technische Universität Berlin  
Le, Chien-Quang
University of Science, Hue, Vietnam
Tran, Trung-Kien
Bosch Center for Artificial Intelligence, Renningen
Hauswirth, Manfred  
Technische Universität Berlin  
Eiter, Thomas
Technische Universität Wien  
Phuoc, Danh Le
Technische Universität Berlin  
Open Access
DOI
10.48550/ARXIV.2202.13958
10.24406/publica-778
File(s)
arXiV_CQELS_2202.13958.pdf (604.22 KB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024