• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Low-energy hydrogen ions enable efficient room-temperature and rapid plasma hydrogenation of TiO2 Nanorods for Enhanced Photoelectrochemical Activity
 
  • Details
  • Full
Options
2022
Journal Article
Title

Low-energy hydrogen ions enable efficient room-temperature and rapid plasma hydrogenation of TiO2 Nanorods for Enhanced Photoelectrochemical Activity

Abstract
Hydrogenation is a promising technique to prepare black TiO2 (H-TiO2) for solar water splitting, however, there remain limitations such as severe preparation conditions and underexplored hydrogenation mechanisms to inefficient hydrogenation and poor photoelectrochemical (PEC) perfor-mance to be overcome for practical applications. Here, a room-temperature and rapid plasma hydrogenation (RRPH) strategy that realizes low-energy hydrogen ions of below 250 eV to fabricate H-TiO2 nanorods with controllable disordered shell, outperforming incumbent hydrogenations, is reported. The mechanisms of efficient RRPH and enhanced PEC activity are experimentally and theoretically unraveled. It is discovered that low-energy hydrogen ions with fast subsurface transport kinetics and shallow penetration depth fea-tures, enable them to directly penetrate TiO2 via unique multiple penetration pathways to form controllable disordered shell and suppress bulk defects, ultimately leading to improved PEC performance. Furthermore, the hydrogen-ation-property experiments reveal that the enhanced PEC activity is mainly ascribed to increasing band bending and bulk defect suppression, compared to reported H-TiO2, a superior photocurrent density of 2.55 mA cm-2 at 1.23 VRHE is achieved. These findings demonstrate a sustainable strategy which offers great promise of TiO2 and other oxides to achieve further-improved material properties for broad practical applications.
Author(s)
Wang, Xiaodan
Fraunhofer-Institut für Schicht- und Oberflächentechnik IST  
Mayrhofer, Leonhard
Fraunhofer-Institut für Werkstoffmechanik IWM  
Keunecke, Martin  
Fraunhofer-Institut für Schicht- und Oberflächentechnik IST  
Estrade, Sonia
Department d'Electrònica, Universitat de Barcelona
Lopez-Conesa, Lluis
Department d'Electrònica, Universitat de Barcelona,
Moseler, Michael  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Waag, Andreas
Institute for Semiconductor Technology, TU Braunschweig
Schäfer, Lothar  
Fraunhofer-Institut für Schicht- und Oberflächentechnik IST  
Shi, Weidong
Jiangsu University, School of Chemistry and Chemical Engineering
Xiangjian, Meng
Chinese Academy of Sciences, Shanghai Institute of Technical Physics
Chu, Junhao
Fudan University, Institute of Optoelectronics
Fan, Zhiyong
The Hong Kong University of Science and Technology, Department of Electronic and Computer Engineering
Shen, Hao
Fraunhofer-Institut für Schicht- und Oberflächentechnik IST  
Journal
Small  
DOI
10.1002/smll.202204136
Language
English
Fraunhofer-Institut für Schicht- und Oberflächentechnik IST  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Keyword(s)
  • black titania

  • low-energy hydrogen ions

  • multiple penetration pathways

  • rapid plasma hydrogenation

  • room-temperature hydrogenation

  • solar water splitting

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024