• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Fundamental resolution limit of quantum imaging with undetected photons
 
  • Details
  • Full
Options
2022
Journal Article
Titel

Fundamental resolution limit of quantum imaging with undetected photons

Abstract
Quantum imaging with undetected photons relies on the principle of induced coherence without induced emission and uses two sources of photon pairs with a signal- and an idler photon. Each pair shares strong quantum correlations in both position and momentum, which allows us to image an object illuminated with idler photons by just measuring signal photons that never interact with the object. In this work, we theoretically investigate the transverse resolution of this nonlocal imaging scheme through a general formalism that treats propagating photons beyond the commonly used paraxial approximation. We hereby prove that the resolution of quantum imaging with undetected photons is fundamentally diffraction limited to the longer wavelength of the signal and idler pairs. Moreover, we conclude that this result is also valid for other nonlocal two-photon imaging schemes.
Author(s)
Vega, Andres
Santos, Elkin A.
Fuenzalida, Jorge
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF
Gilaberte Basset, Marta
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF
Pertsch, Thomas
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF
Gräfe, Markus
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF
Saravi, Sina
Setzpfandt, Frank
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF
Zeitschrift
Physical review research
Thumbnail Image
DOI
10.1103/PhysRevResearch.4.033252
Language
English
google-scholar
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF
Tags
  • Idler photons

  • Imaging schemes

  • Nonlocal imaging

  • Paraxial approximatio...

  • Photon pairs

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022