• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Digital histology of tissue with Mueller microscopy and FastDBSCAN
 
  • Details
  • Full
Options
2022
Journal Article
Titel

Digital histology of tissue with Mueller microscopy and FastDBSCAN

Abstract
We present the results of the automated post-processing of Mueller microscopy images of skin tissue models with a new fast version of the algorithm of density-based spatial clustering of applications with noise (FastDBSCAN) and discuss the advantages of its implementation for digital histology of tissue. We demonstrate that using the FastDBSCAN algorithm, one can produce the diagnostic segmentation of high resolution images of tissue by several orders of magnitude faster and with high accuracy (>97%) compared to the original version of the algorithm.
Author(s)
Lee, Hee Ryung
Lotz, Christian
Fraunhofer-Institut für Silicatforschung ISC
Groeber-Becker, Florian Kai
Fraunhofer-Institut für Silicatforschung ISC
Dembski, Sofia
Fraunhofer-Institut für Silicatforschung ISC
Novikova, Tatiana
Zeitschrift
Applied optics
Thumbnail Image
DOI
10.1364/AO.473095
Language
English
google-scholar
Fraunhofer-Institut für Silicatforschung ISC
Tags
  • Histology

  • Skin tissue

  • Tissue models

  • Microscopy images

  • Mueller

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022