• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. An Isogeometric One-Dimensional Model for Developable Flexible Elastic Strips
 
  • Details
  • Full
Options
2022
Conference Paper
Title

An Isogeometric One-Dimensional Model for Developable Flexible Elastic Strips

Abstract
This paper aims at introducing a kinematical reduction for Kirchhoff-Love shells with developable base surfaces that undergo isometric deformations. This framework is appropriate to model, for example, flexible flat cables. In order to decrease the involved number of degrees of freedom, we utilise kinematical reduction to a geodesic line and a vector field along this curve. Application of a relatively parallel frame allows us to generalise this framework to a more general class of curves that may exhibit points or segments of vanishing curvature. We derive the one-dimensional bending energy functional for a rectangular strip, combine it with penalty terms addressing the nonlinear constraints, and compute the equilibrium state as minimiser of this penalised energy. An isogeometric discretisation yields finitely many degrees of freedom for the inner point optimiser. Several example strips clamped at both ends illustrate the feasibility of this approach.
Author(s)
Bauer, Benjamin  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Roller, Michael  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Linn, Joachim  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Simeon, Bernd
Felix-Klein Zentrum, TU Kaiserslautern
Mainwork
Progress in Industrial Mathematics at ECMI 2021  
Conference
European Conference on Mathematics for Industry 2021  
DOI
10.1007/978-3-031-11818-0_19
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • One-Dimensional Model

  • kinematical reduction

  • Kirchhoff-Love shells

  • isogeometric discretisation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024