• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Customizable-Width Conducting Polymer Micro/Nanoarrays by Subpicosecond Laser Interference Patterning
 
  • Details
  • Full
Options
2022
Journal Article
Title

Customizable-Width Conducting Polymer Micro/Nanoarrays by Subpicosecond Laser Interference Patterning

Abstract
Direct laser interference patterning (DLIP) employing sub-picosecond IR irradiation allows for the ultrafast processing of polyaniline surfaces polymerized onto a poly(methyl methacrylate) substrate (PANI@PMMA) achieving excellent quality features. The patterning shows high levels of precision regarding control of width and height in micro/nanoarrays, giving customization to the surfaces. The electroactive property evaluation suggests the conductivity presents anisotropic characteristics following the patterning of the polymeric surfaces (RSL = 54 ± 5 kΩ sq-1 and RST = 1.7 ± 3 MΩ sq-1, longitudinal and transversal resistance modes respectively). The evidence is supported by electrostatic force microscopy measurements. These results indicate potential applicability in the biomedical field of nerve and myocardial tissue regeneration.
Author(s)
Mulko, Lucinda
TU Dresden  
Heffner, Herman
TU Dresden  
Abel, Silvestre Bongiovanni
Universidad Nacional del Mar del Plata
Baumann, Robert
TU Dresden  
Martín, Dolores
University of the Basque Country, Department of Electricity and Electronics, Bilbao  
Schell, Frederic  orcid-logo
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Lasagni, Andrés-Fabián  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Journal
ACS applied polymer materials  
DOI
10.1021/acsapm.2c01485
Language
English
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Keyword(s)
  • conducting polymers

  • anisotropic conductivity

  • micro/nanoarrangements

  • polyaniline

  • direct laser interference patterning

  • ultrashort laser pulses

  • laser processing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024