• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Refined Fault Detection in LVDC-Grids with Signal Processing, System Identification and Machine Learning Methods
 
  • Details
  • Full
Options
2018
Conference Paper
Title

Refined Fault Detection in LVDC-Grids with Signal Processing, System Identification and Machine Learning Methods

Abstract
Direct current microgrids in the low voltage range require specific system protection. In addition to the basic functionality of conventional protective devices, a refined and model-based analysis of measured current and voltage signals is necessary. Signal processing, system identification and machine learning methods are helpful to identify, classify and localize faults and gradual malfunction. Online condition monitoring allows the realization of predictive maintenance concepts, a thorough analysis of occurring events guards against grid sector breakdown by an appropriate and selective tripping of protective devices.
Author(s)
Strobl, Christian
Ott, Leopold
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Kaiser, Julian
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Gosses, Kilian  orcid-logo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Schäfer, Maximilian
Rabenstein, Rudolf
Mainwork
Sixty-Fourth IEEE Holm Conference on Electrical Contacts 2018. Proceedings  
Conference
Holm Conference on Electrical Contacts 2018  
DOI
10.1109/HOLM.2018.8611739
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024