• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Verification of Sitter Identity Across Historical Portrait Paintings by Confidence-aware Face Recognition
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Verification of Sitter Identity Across Historical Portrait Paintings by Confidence-aware Face Recognition

Abstract
Verifying the identity of a person (sitter) portrayed in a historical painting is often a challenging but critical task in art historian research. In many cases, this information has been lost due to time or other circumstances and today there are only speculations of art historians about which person it could be. Art
historians often use subjective factors for this purpose and then infer from the identity information about the person depicted in terms of his or her life, status, and era. On the other hand, automated face recognition has achieved a high level of accuracy, especially on photographs, and considers objective factors to
determine the identity or verify a suspected identity. The limited amount of data, as well as the domain-specific challenges, make the use of automated face recognition methods in the domain of historic paintings difficult. We propose a specialized, likelihood-based fusion method to enable deep learning-based
face recognition on historic portrait paintings. We additionally propose a method to accurately determine the confidence of the made decision to assist art historians in their research. For this purpose, we used a model trained on common photographs and adapted it to the domain of historical paintings through transfer learning. By using an underlying challenge dataset, we compute the likelihood for the assumed identity against reference images of the identity and fuse them to utilize as much information as possible. From these results of the likelihoods fusion, we then derive decision confidence to make statements to determine the certainty of the model’s decision. The experiments were carried out in a leave-one-out evaluation scenario on our created database, the largest authentic database of historic portrait paintings to date, consisting of over 760 portrait paintings of 210 different sitters by over 250 different artists. The experiments demonstrated, that a) the proposed approach outperforms pure face recognition solutions, b) the fusion approach effectively combines the sitter information towards a higher verification accuracy, and c) the proposed confidence estimation approach is highly successful in capturing the estimated accuracy of the decision. The meta-information of the used historic face images can be found at https://github.com/marcohuber/HistoricalFaces.
Author(s)
Huber, Marco  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Terhörst, Philipp  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Luu, Anh Thi
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kirchbuchner, Florian  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Mainwork
ICPR 2022, 26th International Conference on Pattern Recognition  
Project(s)
Next Generation Biometric Systems  
Next Generation Biometric Systems  
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Hessisches Ministerium für Wissenschaft und Kunst
Conference
International Conference on Pattern Recognition 2022  
DOI
10.1109/ICPR56361.2022.9956452
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Lead Topic: Digitized Work

  • Lead Topic: Smart City

  • Lead Topic: Visual Computing as a Service

  • Research Line: Computer vision (CV)

  • Research Line: Human computer interaction (HCI)

  • Research Line: Machine Learning (ML)

  • Face recognition

  • Cultural heritage

  • Art history

  • Biometrics

  • Machine learning

  • ATHENE

  • CRISP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024